Friday, January 6, 2017

Scientific practice

Although encyclopedias such as Pliny's (fl. 77 AD) Natural History offered purported fact, they proved unreliable. A skeptical point of view, demanding a method of proof, was the practical position taken to deal with unreliable knowledge. As early as 1000 years ago, scholars such as Alhazen (Doubts Concerning Ptolemy), Roger Bacon, Witelo, John Pecham, Francis Bacon (1605), and C. S. Peirce (1839–1914) provided the community to address these points of uncertainty. In particular, fallacious reasoning can be exposed, such as "affirming the consequent."
"If a man will begin with certainties, he shall end in doubts; but if he will be content to begin with doubts, he shall end in certainties."
The methods of inquiry into a problem have been known for thousands of years,[95] and extend beyond theory to practice. The use of measurements, for example, is a practical approach to settle disputes in the community.
John Ziman points out that intersubjective pattern recognition is fundamental to the creation of all scientific knowledge.[96]:p44 Ziman shows how scientists can identify patterns to each other across centuries; he refers to this ability as "perceptual consensibility."[97]:p46 He then makes consensibility, leading to consensus, the touchstone of reliable knowledge.[97]:p104

Basic and applied research

Anthropogenic pollution has an effect on the Earth's environment and climate
Although some scientific research is applied research into specific problems, a great deal of our understanding comes from the curiosity-driven undertaking of basic research. This leads to options for technological advance that were not planned or sometimes even imaginable. This point was made by Michael Faraday when allegedly in response to the question "what is the use of basic research?" he responded: "Sir, what is the use of a new-born child?".[98] For example, research into the effects of red light on the human eye's rod cells did not seem to have any practical purpose; eventually, the discovery that our night vision is not troubled by red light would lead search and rescue teams (among others) to adopt red light in the cockpits of jets and helicopters.[87]:106–110 In a nutshell, basic research is the search for knowledge and applied research is the search for solutions to practical problems using this knowledge. Finally, even basic research can take unexpected turns, and there is some sense in which the scientific method is built to harness luck.

Research in practice

Due to the increasing complexity of information and specialization of scientists, most of the cutting-edge research today is done by well-funded groups of scientists, rather than individuals.[99] D.K. Simonton notes that due to the breadth of very precise and far reaching tools already used by researchers today and the amount of research generated so far, creation of new disciplines or revolutions within a discipline may no longer be possible as it is unlikely that some phenomenon that merits its own discipline has been overlooked. Hybridizing of disciplines and finessing knowledge is, in his view, the future of science.[99]

No comments:

Post a Comment